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The variogram model used in estimation and/or simulation is important.  Calculating and fitting a stable 
more representative variogram model leads to more reasonable models.  The variogram is a two-point 
statistic that spatially relates two random variables (RV), Z(u) and Z(u+h).  Data are used to infer the 
variogram for all h lag vectors.  Calculating experimental variograms in the case of regularly gridded data 
is much easier than the case of irregular data.  Tolerance parameters must be chosen for irregularly 
located data to permit sufficient data pairs for reliable calculation.  Defining these tolerance parameters is 
a challenge for newcomers to geostatistics.  An optimization procedure is developed to establish good 
automatically chosen variogram parameters.  These tolerance parameters are optimized by using a penalty 
function that accounts for the difference in the fitted variogram and the assumed to be true variogram.  The 
optimal tolerance parameters are the ones that minimize the penalty function.  This is applied for 
omnidirectional and directional variograms in 2 and 3-D.  This provides a practical tool to establish an 
experimental variogram with less uncertainty. 

Introduction 

The GSLIB (Deutsch and Journel, 1998) program, gamv, can be used to calculate the experimental 
variogram points for a given irregular data set. The user should define some tolerance parameters (they will 
be defined later in this paper) based on the data locations to calculate the experimental points. The 
parameter file for gamv is written below: 
 

                   Parameters for GAMV 
                   ******************* 
 
START OF PARAMETERS: 
data.dat                            -file with data 
1   2   0                           -   columns for X, Y, Z coordinates 
1   3                               -   number of variables,col numbers 
-1.0e21     1.0e21                  -   trimming limits 
gamv.out                            -file for variogram output 
10                                  -number of lags 
10                                  -lag separation distance 
5                                   -lag tolerance 
1                                   -number of directions 
0.0  90.0 400.0   0.0  90.0  400.0  -azm,atol,bandh,dip,dtol,bandv 
0                                   -standardize sills? (0=no, 1=yes) 
1                                   -number of variograms 
1   1   1                           -tail var., head var.,variogram type 

The bolded text shows the tolerance parameters.  They should be set reasonably in the case of 2D or 3D 
data set to get a meaningful variogram.  Each of these parameters affects the calculated variogram.  The 
“best” parameters would lead to a final fit that is close to the unknown true variogram.  Choosing the 
tolerance parameters in the case of irregularly gridded data is complicated.  The tolerance parameters 
should be chosen in such a way that there is enough number of pairs for a reliable variogram value.  There 
are more data aligned in the vertical direction than horizontal directions; therefore it is better to separate 
these directions.  The tolerance parameters are different in these two cases.  

Tolerance in vertical directions 

There are four tolerance parameters in this case (Deutsch, 2002): 
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• Unit lag separation distance, h (h is a scalar quantity); it is equal to data spacing in the case of 
regularly spaced data. In petroleum applications, the vertical data are regularly spaced, therefore 
choosing the unit lag separation distance is not a problem. 

• The distance tolerance, htol (similar to h, htol is a scalar quantity); in real case this parameter 
usually takes the values of 0.25h , 0.5h and 0.75h . The value of 0.5h  is used in almost all of 
the cases. The value of 0.25h is used when there are many data on a nearly regular grid and in the 
case of small number of pairs for each lag, it is recommended to use 0.75h .  

• The angle tolerance, atol; this parameter is used when there is some deviation from vertical 
direction.  

• A bandwidth parameter, b; this parameter is defined to limit the region for finding data pairs for 
variogram calculation in vertical direction. After a certain lag distances bandwidth parameter is 
applied to limit the tolerance region. 

Tolerance in horizontal directions 

There are six tolerance parameters in this case; they are (Deutsch, 2002): 

• Unit lag separation distance, h; the properties of this parameter are the same as vertical case. 

• The distance tolerance, htol; the properties of this parameter are the same as vertical case. 

• The horizontal angle tolerance, ah
tol; this parameter can be applied to limit the direction which we 

are interested to calculate the associated variogram. In the case of omnidirectionality, it can be set 
to 90 degree or a greater angle to have all of the points in horizontal plane. The omnidirectional 
experimental variogram averages the variability over all directions. 

• The horizontal bandwidth, bhor; similar to the vertical bandwidth, it is used to define a limited 
tolerance region in horizontal plane. In the case of omnidirectionality, the horizontal bandwidth 
should be set to a large number to have all of the points in all directions to calculate the 
omnidirectional variogram value. 

• The vertical angle tolerance, av
tol, used to define an angle tolerance about the horizontal plane. It 

should be set to a small value because of the large variability in vertical direction which can affect 
the true variogram calculation for a specific stratigraphic layer.  

• The vertical bandwidth, bver; this bandwidth relates to the vertical angle tolerance and is defined to 
limit the stratigraphic layer. It should be set to a small value to have a good approximation of the 
variogram.  

Methodology and Procedures 

To optimize the tolerance parameters a penalty function is defined and the optimal tolerance parameters are 
obtained by minimizing this penalty function. This penalty function gives a penalty for each set of 
parameters, this can be obtained by adding all of the errors (between the fitted variogram and the true or 
assumed to be true variogram) associated to each lag distance (and for each set of parameters). Figure 1 
shows schematically the difference function between the fitted variogram and the reference variogram 
which is used in the definition of the penalty function.  
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Figure 1 Fitted variogram (dotted line) versus the reference variogram (dashed line) and their difference 
(fitted minus reference; solid line) 

 

So the error can be written in integral form as below: 
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Where: 
( )

realzip θ  ; Penalty function for the realzi realization and set of tolerance parameters θ  

realzi  ; Realization number 

θ  ; A set of tolerance parameters 
a  ; Reference variogram range 

( );
realz

fit
iγ θh  ;  Fitted variogram of the experimental variogram points based on the tolerance 

   parametersθ . 

( )refγ h   ; Reference variogram 

( )wt h   ; Inverse distance weight associated to each lag distance 

The inverse distance weighting associated to each lag is calculated from below formula: 
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The reason for inverse weighting of the difference between the true variogram and the reference variogram 
is that the small lag distances which show the short variability get more weight and the large lag distances 
get less weight. The small number,ε , is used in the denominator because in this case the weight at h=0 can 
be defined (which is a large number).θ  has different number of components depending on 2D or 3D cases. 
In 2D case θ  has at most 4 components: lag separation distance, h, lag tolerance, htol, angle tolerance, atol, 
and the bandwidth, b. In the case of omnidirectionality where the angle tolerance is 90 degrees and the 
bandwidth is a large value, θ  has 2 components of lag separation distance and the lag tolerance only. 
These four parameters are shown in Figure 2. 

In 3D case since we are dealing with vertical and horizontal (minor and major) directions, therefore two 
different sets of parameters can be defined. For the vertical lag distance (Figure 3) θ  has at most 4 
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components these are the unit lag separation distance, h, lag tolerance, htol, angle tolerance, atol, and the 
bandwidth, b.  

 
Figure 2 Lag separation distance, h, lag tolerance, htol, azimuth tolerance, atol and bandwidth, b 

 
Figure 3 Lag separation distance, h, lag tolerance, htol, angle tolerance, atol and bandwidth, b in three 
dimensional case-vertical lag distance 

For the horizontal lag distance (Figure 4) θ  has at most 6 components: unit lag separation lag distance, h, 
the lag tolerance, htol, the vertical angle tolerance, av

tol, the horizontal angle tolerance, ah
tol, the vertical 

bandwidth, bver and the horizontal bandwidth, bhor. The number of components can be decreased in case of 
omnidirectionality or in the case with no bandwidth. 

 
Figure 4 Lag separation distance, h; lag tolerance, htol; vertical angle tolerance, av

tol; horizontal angle 
tolerance, ah

tol; vertical bandwidth, bver and horizontal bandwidth, bhor in three dimensional case-horizontal 
lag distance 



 121-5 

Besides the tolerance parameters another parameter can be defined in order to capture the relationship 
between the tolerance parameters and the penalty function. This parameter which is named tolerance ratio 
is a function of all of the tolerance parameters which are used to calculate the experimental variogram. A 
tolerance ratio is equal to the tolerance area (in 2D case) or volume (in 3D case) divided by the area or the 
volume of the semi-circle or hemi-sphere with a radius of 2h (h is the unit lag distance). For example this 
tolerance ratio is 100 % in the case of the calculation of the omnidirectional variogram (the only tolerance 
parameters are unit lag distance and the lag tolerance) with the lag tolerance, htol, which is equal to unit 
separation lag distance; h. Figure 5 schematically explains the tolerance ratio in 2D case. The tolerance 
ratio will be used as one of the parameters for optimizing the tolerance parameters. In general there are two 
different cases for calculating the tolerance ratio; 2D (omnidirectional and general case) and 3D 
(omnidirectional, horizontal and vertical lag distances).  

In next sections the formulas for tolerance ratio are given for different cases.  

Tolerance ratio in 2D 

a) Omnidirectional case 

In this case tolerance ratio depends only on unit lag distance, h and the lag tolerance, htol. The 
bandwidth and the angle tolerance should be set to a large number and 90 degree in order to 
calculate the omnidirectional experimental variogram by using gamv program in GSLIB. The area 
function ( )A r is the area of the semi-circle with the radius of r (see Figure 5). 

 ( ) 2

2
A r rπ

=  (3) 

Therefore the tolerance ratio is: 

 
( ) ( )

( )2
+ − −

= =tol tol tolA h h A h h hTol
A h h

 (4) 

 
Figure 5  Tolerance ratio for two dimensional case 

b) General case 

In this case the tolerance area is function of unit lag distance, h, the lag tolerance, htol, angle 
tolerance, atol and the bandwidth, b. Depending on the magnitude of the unit lag distance, h, three 
cases would be happen. To specify these three cases another parameter, h*, can be defined which is 
function of the angle tolerance, atol and the bandwidth, b. h* can be calculated by using below 
formula (see Figure 2): 

 *

sin tol

bh
a

=  (5) 
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It can be seen from Figure 2 that when ( )*≤ − tolh h h , the tolerance area is made by using the unit 

lag distance, lag tolerance and angle tolerance (note that the tolerance area in this case is 
independent of the magnitude of bandwidth). If ( )*> + tolh h h  the tolerance area is function of 

unit lag distance, lag tolerance and bandwidth (in this case the tolerance are is independent of the 
magnitude of angle tolerance) and if ( ) ( )* *− < ≤ +tol tolh h h h h then the tolerance area is 

function of all four tolerance parameters. 

The three cases for different lag distances can be defined as: 

1. ( )*≤ − tolh h h ; 

 ( ) 2
1 ,α α= ⋅A r r  (6) 

 
( ) ( )

( )
1 1, , 2

2 π
+ − − ⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
tol tol tol tol tol tolA h h a A h h a a hTol

A h h
 (7) 

atol is in radians. 

2. ( )*> + tolh h h ; 

 ( )
2

2
2 , 1 arcsin

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ − + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

b b bA r b r
r r r

 (8) 

 
( ) ( )

( )
2 2, ,

2
+ − −

= tol tolA h h b A h h b
Tol

A h
 (9) 

3. ( ) ( )* *− < ≤ +tol tolh h h h h ; 

 
( ) ( ) ( ) ( )

( )

* *
1 1 2 2, , , ,

2
− − + + −

= tol tol tol tolA h a A h h a A h h b A h b
Tol

A h
 (10) 

Tolerance ratio in 3D 

a) Omnidirectional case 

Similar to the 2D case, the tolerance ratio only depends on the unit lag distance, h, and the lag 
tolerance, htol, in this case instead of area function; the volume function should be defined which is 
equal to the volume of the hemisphere with a radius of r. 

 ( ) 32
3
π

= ⋅V r r  (11) 

Therefore from equation(11), we will have: 

 
( ) ( )

( )

21 3
2 4

⎡ ⎤+ − − ⎛ ⎞ ⎛ ⎞= = ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

tol tol tol tolV h h V h h h hTol
V h h h

 (12) 

b) General case 
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For the general 3D case, two scenarios can be considered; the first one is for the vertical lag distance 
(Figure 3) and the second one is for horizontal lag distance (Figure 4). 

b-1) Vertical lag distance 

In this case the tolerance volume is a function of unit lag distance, h, the lag tolerance, htol, angle 
tolerance, atol and the bandwidth, b (see Figure 3). Based on the magnitude of the unit lag 
distance three different cases exist. 

1. ( )*≤ − tolh h h ; 

 ( ) ( ) 3
1

2, 1 cos
3
πα α= ⋅ − ⋅V r r  (13) 

 
( ) ( )

( )
1 1, ,

2
tol tol tol tolV h h a V h h a

Tol
V h

+ − −
=  (14) 

Therefore from equations(11), (13) and(14), we will have: 

 ( )
21 1 cos 3

4
tol tol

tol
h hTol a
h h

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (15) 

2. ( )*> + tolh h h ; 

 ( )
3

2 2
3

2
2, 1 1
3
π

⎡ ⎤
⎛ ⎞⎛ ⎞⎢ ⎥= ⋅ − − ⋅⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

bV r b r
r

 (16) 

 
( ) ( )

( )
2 2, ,

2
+ − −

= tol tolV h h b V h h b
Tol

V h
 (17)  

3. ( ) ( )* *− < ≤ +tol tolh h h h h ; 

 
( ) ( ) ( ) ( )

( )

* *
1 1 2 2, , , ,

2
− − + + −

= tol tol tol tolV h a V h h a V h h b V h b
Tol

V h
 (18) 

b-2) Horizontal lag distance 

In this case the tolerance volume is a function of the unit lag distance, h, the lag tolerance, htol, 
the vertical angle tolerance, av

tol, the horizontal angle tolerance, ah
tol, the vertical bandwidth, 

bver and the horizontal bandwidth, bhor (see Figure 4): 

 ( ), , , , ,= v h
tol tol tol ver horTol f h h a a b b  (19) 

As before the magnitude of the unit lag distance results in different scenarios: 

1. ( )*≤ −ver tolh h h ;  ( *

sin
ver

ver v
tol

bh
a

= ); 

 ( ) ( ) 3
3 1

2, , 1 ,
3
πα β α β⎡ ⎤= ⋅ − ⋅⎣ ⎦V r I r  (20) 
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Where  

 ( )
1

2 2 2 2 22

1 2 2 2 20

1 cot cos cot sin,
2 1 cot cos cot sin

π α θ β θα β θ
π α θ β θ

⎛ ⎞⋅ + ⋅
= ⋅ ⋅⎜ ⎟+ ⋅ + ⋅⎝ ⎠

∫I d  (21) 

 
( ) ( )

( )
3 3, , , ,

2

h v h v
tol tol tol tol tol tolV h h a a V h h a a

Tol
V h

+ − −
=  (22) 

Therefore from equations(20), (21) and(22), we will have: 

 ( )
2

1
1 1 , 3
4

h v tol tol
tol tol

h hTol I a a
h h

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= ⋅ − ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (23) 

2. ( ) ( )* *+ < ≤ −ver tol hor tolh h h h h ; 

 ( ) ( ) ( ) 3
4 2

3sin 22, , 1 , ,
3 8

απα α
⎡ ⎤⎛ ⎞= ⋅ − − ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

bV r b I r b r
r

 (24) 

Where 

 ( )

3
2 2

2 2 2

2

2 20
2 2 2

csc cos sin 1
1, ,

2
csc cos sin

π
α θ θ

α θ
π

α θ θ
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⎝ ⎠⎢ ⎥= ⋅ ⋅

⎢ ⎥⎛ ⎞⋅ + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

r
bI r b d

r
b

 (25) 

 
( ) ( )

( )
4 4, , , ,

2

+ − −
=

h h
tol ver tol tol ver tolV h h b a V h h b a

Tol
V h

 (26) 

3. ( ) ( )* *− < ≤ +ver tol ver tolh h h h h ; 

( ) ( ) ( ) ( )
( )

* *
3 3 4 4, , , , , , , ,

2

− − + + −
=

h v h v h h
ver tol tol tol tol tol tol ver tol ver ver tolV h a a V h h a a V h h b a V h b a
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V h

 (27) 

4. ( )*> +hor tolh h h ; 

 ( ) ( ) 3
5 3

2, , 1 , ,
3
π

⎡ ⎤= ⋅ − ⋅⎣ ⎦V r a b I r a b r  (28) 

Where 

 ( )

3
2 2 2

2 2

2

3 2 20
2 2

cos sin 1
1, ,

2
cos sin

π
θ θ

θ
π

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ + ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥= ⋅
⎢ ⎥⎛ ⎞ ⎛ ⎞⋅ + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

r r
a bI r a b d

r r
a b

 (29) 
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( ) ( )

( )
5 5, , , ,

2
+ − −

= tol hor ver tol hor verV h h b b V h h b b
Tol

V h
 (30) 

5. ( ) ( )* *− < ≤ +hor tol hor tolh h h h h ; 

 ( ) ( ) ( ) ( )
( )

* *
4 4 5 5, , , , , , , ,

2
− − + + −

=
h h

hor ver tol tol ver tol tol hor ver hor hor verV h b a V h h b a V h h b b V h b b
Tol

V h
(31) 

Methodology 

The procedure for optimizing the tolerance parameters is as below: 

1. Use spatial bootstrap (Deutsch, 2004) to obtain L values (realizations) for each of the data 
locations. 

2. Determine different reasonable sets of tolerance parameters for variogram calculation. 

3. For each set of tolerance parameters and each realization: 

a. Calculate the experimental variogram. 

b. Fit the experimental variogram with a variogram model, ( );
realz

fit
iγ θh , by using varfit 

program (Neufeld and Deutsch, 2004). 

c. Calculate the penalty function, ( )
realzip θ , by using equation (1). 

4. For each set of tolerance parameters, calculate final penalty by averaging over different calculated 
penalty for different spatial bootstrap realizations. 

5. Map penalty function as a function of tolerance parameters. 

6. Find the optimum tolerance parameters by minimizing the penalty function. 

Spatial bootstrap 

Spatial bootstrap (Deutsch, 2004) is used to assess and quantify the uncertainty in the variogram at each 
lag. The spatial bootstrap procedure is as follow: 

1. Preliminary analysis: 

a. Assemble the representative distribution of the random variable Z, F(z); 

b. Define a 3-D variogram model ( )γ h of the normal scores of the random variable Z; 

c. Decompose the n by n covariance matrix by the Cholesky decomposition into product of 
upper (U) and lower (L) triangular matrices: C = LU 

2. Generate a new set of data, z, as  

 ( )( )1
zz F G Lw−=  (32) 

where w is a n by 1 vector of independent Gaussian values and  G(·) denotes the    standard 
Gaussian cumulative distribution function. 

3. Calculate the statistic of interest from the resampled dataset. 

4. Repeat Steps 2 and 3 many times, say, L=100. 

5. Establish the distribution of uncertainty in the calculated statistic. 
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Choosing the reference variogram model 

Reference variogram model (or the assumed to be true variogram), ( )refγ h , is unknown at the first stage 
of the optimization. A reasonable guess for the reference variogram model can be a single structure with an 
isotropic variogram with the range of one-third of the field size and the nugget effect of zero, a sensitivity 
study on choosing the range of correlation and the nugget effect can be performed to see the impact of these 
two parameters on tolerance parameters (see Derakhshan et. al, 2007-2). After performing the proposed 
optimization technique and getting the optimal set of tolerance parameters, the experimental variogram can 
be calculated. The tolerance correction factor should be applied to these calculated points (see Derakhshan 
et. al, 2007-3). By using the corrected experimental variogram points, the variogram model can be fitted. 
This model can be fed into the first stage of the procedure; it can be iterated to get a reasonable reference 
variogram model. 

This uncertainty has effect on the selection of the optimal tolerance parameters. The penalty 
function, ( )

realzip θ , can be calculated for different realizations which are output of spatial bootstrap. 
Spatial bootstrap needs the original data and also the reference variogram to create different realizations. 
This reference variogram is the same as ( )refγ h which is used to calculate the penalty function, 

( )
realzip θ . Basically to obtain the tolerance parameters for a given data set first the spatial bootstrap is 

performed to get different realization at each data location. Two assumptions are made before performing 
spatial bootstrap; the first one is that the initial data distribution is representative of the entire population 
and the second one is that the data are spatially correlated; this spatial correlation is represented by the 
reference variogram which is unknown and also is not modeled at the first step of the tolerance parameters 
calculations. In chapter 4, a sensitivity analysis will be shown for a real data set on how to choose 
reasonable variogram range and nugget effect for a single spherical structure for the reference variogram 
model. The reasonable assumptions for the variogram model could be single spherical structure with range 
of one-third of the variogram range. Declustering techniques might be performed to get the weights for the 
data points. Spatial bootstrap needs the distribution of the original data. The cumulative distribution 
function of the data is required for randomly drawing the data values for the bootstrap. After determining 
the reference distribution and variogram the spatial bootstrap can be applied to get L realizations for each of 
the data locations. 

Experimental variogram calculations for different tolerance parameters 

The GSLIB program, gamv, can be used to calculate the experimental variogram for different tolerance 
parameters. Reasonable range for tolerance parameters should be defined for calculations. This range 
should contain the optimal tolerance parameters. The range for unit lag distance or lag separation distance 
can be obtained by building the cumulative distribution function of the minimum distance between the data 
locations. There is just one value for the minimum distance which corresponds to a data location. The 
minimum distance between the data points is calculated as: 

 { }min
data data datai i jd = −u u  (33) 

where 
dataid is the minimum distance between the data points which corresponds to each data location, 

−
data datai ju u is the norm of the separation vector between data locations idata and jdata 

( and , 1,2,3, ,data data data data datai j i j n≠ = … ). The cumulative distribution function for 
dataid can be 

built and the reasonable range of values for unit lag separation distance can be obtained by using this 
distribution. The values between P10 and P90 of the 

dataid values are used for different lag separation 
distances. Because of the CPU cost, the number of unit lag distances for different variogram calculations, 
nh, should not be large. To cover the whole range and test different lag separation distance, the following 
relationship is considered for calculating the unit lag distance for different cases. 
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90 10 10h

h

P Ph i P
n

⎛ ⎞−
= ⋅ +⎜ ⎟
⎝ ⎠

 (34) 

Where h is the unit lag distance, P10 and P90 are the distances calculated from distribution of
dataid . hn is 

the number of different unit lag distance used for calculating the optimal one and hi is the index for 

hn ( 0,1, 2, ,h hi n= … ). 

For the range of the lag tolerance, the values between 0 % and 100 % of the unit lag distance are used. 
Therefore 

 tol
tol

tol

ih h
n

⎛ ⎞
= ⋅⎜ ⎟
⎝ ⎠

 (35) 

where toln is the number of different lag tolerances used for calculating the optimal one 

( 1, 2, ,tol toli n= … ). Similar to hn , toln should not be a large number for CPU efficiency. 

For azimuth tolerance and dip tolerance, we can use values between 0 and 90 degrees. The increments can 
be defined to calculate different angle tolerances. Again the number of increments has impact on CPU time. 
The range for horizontal and vertical bandwidth can be estimated by using some geological information. In 
the case of lack of geological information the minimum and maximum possible values for the bandwidths 
can be considered. The maximum possible value for horizontal bandwidth can be the maximum areal 
dimension of the field and for the vertical bandwidth it is the thickness of the stratigraphic layer. After 
obtaining reasonable ranges for the tolerance parameters, the experimental variogram is calculated for each 
set of tolerance parameters and for each realization obtained from spatial bootstrap. 

Fitting the experimental variogram for each realization 

In this step the compatible GSLIB program, varfit (Neufeld and Deutsch, 2004), is used to fit the 
experimental variogram points with an optimized variogram model, the experimental points are different 
for different tolerance parameters and different realizations. The fitted model, ( );

realz

fit
iγ θh , is used to 

calculate the penalty function. 

Calculating and minimizing the final penalty function 

First the penalty function (see equation(1)) is calculated for each realization and each set of tolerance 
parameters. After calculating these penalties the final penalty, ( )θp  which is function of tolerance 
parameters is calculated by averaging the calculated penalties over different realizations for the fixed 
tolerance parameters. Therefore 

 ( ) ( )
1

1θ θ
=

= ⋅ ∑
realz

realz

realz

n

i
irealz

p p
n

 (36) 

where realzn is the number of realizations, θ corresponds to the fixed tolerance parameters and ( )θ
realzip is 

the penalty for realization realzi and is calculated by using equation(1). 

After calculating the final penalty, it should be minimized to get the optimal tolerance parameters. The 
tolerance parameters have different number of components for different cases. For example for 
omnidirectional 2D and 3D data sets, there are two components for variogram calculation, they are unit lag 
distance and the lag tolerance (instead of lag tolerance the tolerance ratio can also be used). For other 
general cases the number of tolerance components is greater than 2.  
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For minimizing the penalty function in the presence of multiple variables a sequential type approach could 
be used to obtain the optimal point which minimizes the penalty function. For example if there are three 
variables, at first step two of them should be fixed and the penalty should be minimized with respect the 
variable which is not fixed. After specifying this point the next variable should be optimized and the others 
should be fixed. This procedure can be applied step by step to get the final optimal point and as mentioned 
at each step one of the variables should be optimized and the others are fixed and each of the variables is 
optimized once.  After obtaining the optimal tolerance parameters, the experimental variogram should be 
calculated by using the optimal tolerance parameters and fitted with the varfit program. 

Conclusion 

A methodology for optimizing tolerance parameters for variogram calculation has been proposed.  The 
methodology is straightforward and the workflow was presented.  The optimality is defined as how close 
the fitted variogram comes to the true variogram.  Since the true variogram is unknown, it is assumed and a 
resampling scheme is followed to establish the optimal tolerance parameters.  The entire procedure could 
be iterated with the latest best estimate of the variogram.  A variogram model will be fitted with the 
experimental variogram points; a penalty is defined based on the difference between these two variogram 
functions.  A spatial bootstrap is used to permit multiple sets of fitted variogram models.  The penalty 
values for each set of tolerance parameters are averaged over different realizations. 

A wide variety of optimization techniques might be used for optimizing tolerance parameters. Spatial 
bootstrap was presented to assess uncertainty in tolerance parameters optimization.  Conditional finite 
domain (CFD) approach (Babak and Deutsch, 2007) can be used instead of spatial bootstrap to parameter 
the uncertainty in the statistics of interest (i.e. penalty function). 
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